Vol. 2 No. 3 (2024): SJESR - September 2024
Articles

Software Defined Radio-based Human Activity Recognition: A Comprehensive Review: Software Defined Radio-based Human Activity Recognition: A Comprehensive Review

Zhraa Yahya
dia Ali Ninevah university / College of Electronics
Software Defined Radio-based Human Activity Recognition: A Comprehensive Review

Published 2024-09-30

Keywords

  • Human Activity Recognition, Software Defined Radio, USRP, Deep Learning, and Machine Learning.

How to Cite

Software Defined Radio-based Human Activity Recognition: A Comprehensive Review: Software Defined Radio-based Human Activity Recognition: A Comprehensive Review. (2024). Samarra Journal of Engineering Science and Research, 2(3), 26-39. https://doi.org/10.65115/qd8vyc31

Abstract

The Human Activity Recognition (HAR) systems have been recognized as one of central important components in numerous inevitable everyday-life applications, e.g. healthcare, security, search and rescue. In order to overcome the wearable sensor burden, RF-based HAR has become a promising technology candidate for many applications to save on privacy concern. The fundamental concept of this systems is achieved by the fact that human movement will affect the RF propagation path and characteristics, which will lead to reflected signals with distinctive fingerprint for different activities. In this research, a comprehensive review of RF-based HAR with the utilization of Software Defined (SDR) technology is presented for practical implementation by transmitting the RF signals towards the human and receiving signals from various scenarios through the utilization of several Universal Software Radio Peripheral (USRP) platforms. This research gives details about the types of HAR classifiers, human activities, type of the utilized waveforms and systems architectures. The High classification accuracies for different tasks have been achieved with the use of various deep learning, machine learning and model-based techniques. The efficacy of SDR technology has been demonstrated in real-time practical HAR systems.

Downloads

Download data is not yet available.

References

  1. Qiu, S., Zhao, H., Jiang, N., Wang, Z., Liu, L., An, Y., ... & Fortino, G. (2022). Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges. Information Fusion, 80, 241-265.
  2. Gupta, N., & Agarwal, B. B. (2023). Recognition of Suspicious Human Activity in Video Surveillance: A Review. Engineering, Technology & Applied Science Research, 13(2), 10529-10534.
  3. Tripathi, R. K., Jalal, A. S., & Agrawal, S. C. (2018). Suspicious human activity recognition: a review. Artificial Intelligence Review, 50, 283-339.
  4. Zin, T. T., Htet, Y., Akagi, Y., Tamura, H., Kondo, K., Araki, S., & Chosa, E. (2021). Real-time action recognition system for elderly people using stereo depth camera. Sensors, 21(17), 5895.
  5. Dang, L. M., Min, K., Wang, H., Piran, M. J., Lee, C. H., & Moon, H. (2020). Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recognition, 108, 107561.
  6. Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., & Liu, Y. (2021). Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities. ACM Computing Surveys (CSUR), 54(4), 1-40.
  7. Tripathi, R. K., Jalal, A. S., & Agrawal, S. C. (2018). Suspicious human activity recognition: a review. Artificial Intelligence Review, 50, 283-339.
  8. Vrigkas, M., Nikou, C., & Kakadiaris, I. A. (2015). A review of human activity recognition methods. Frontiers in Robotics and AI, 2, 28.
  9. Zheng, W., Yan, L., Gou, C., & Wang, F. Y. (2022). Meta-learning meets the Internet of Things: Graph prototypical models for sensor-based human activity recognition. Information Fusion, 80, 1-22.
  10. Wang, W., Liu, A. X., Shahzad, M., Ling, K., & Lu, S. (2017). Device-free human activity recognition using commercial WiFi devices. IEEE Journal on Selected Areas in Communications, 35(5), 1118-1131.
  11. Beddiar, D. R., Nini, B., Sabokrou, M., & Hadid, A. (2020). Vision-based human activity recognition: a survey. Multimedia Tools and Applications, 79(41), 30509-30555.
  12. Mahmud, T., & Hasan, M. (2021). Vision-based human activity recognition. Contactless Human Activity Analysis, 1-42.
  13. Wang, J., Chen, Y., Hao, S., Peng, X., & Hu, L. (2019). Deep learning for sensor-based activity recognition: A survey. Pattern recognition letters, 119, 3-11.
  14. Wang, Y., Cang, S., & Yu, H. (2019). A survey on wearable sensor modality centred human activity recognition in health care. Expert Systems with Applications, 137, 167-190.
  15. De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J. M., & Espinilla, M. (2018). Sensor-based datasets for human activity recognition–a systematic review of literature. IEEE Access, 6, 59192-59210.
  16. Zhang, H. B., Zhang, Y. X., Zhong, B., Lei, Q., Yang, L., Du, J. X., & Chen, D. S. (2019). A comprehensive survey of vision-based human action recognition methods. Sensors, 19(5), 1005.
  17. Manaf, A., & Singh, S. (2021, May). Computer vision-based survey on human activity recognition system, challenges and applications. In 2021 3rd International Conference on Signal Processing and Communication (ICPSC) (pp. 110-114). IEEE.
  18. Boulila, W., Shah, S. A., Ahmad, J., Driss, M., Ghandorh, H., Alsaeedi, A., ... & Saeed, F. (2021). Noninvasive detection of respiratory disorder due to covid-19 at the early stages in saudi arabia. Electronics, 10(21), 2701.
  19. Adib, F., Kabelac, Z., & Katabi, D. (2015). Multi-person motion tracking via RF body reflections. In NSDI'15: Proceedings of the 12th USENIX Conference on Networked Systems Design and Implementation (pp. 279–292).
  20. Rehman, M. U., Najam, S., Khalid, S., Shafique, A., Alqahtani, F., Baothman, F., ... & Ahmad, J. (2021). Notice of Retraction: Infrared Sensing Based Non-Invasive Initial Diagnosis of Chronic Liver Disease Using Ensemble Learning. IEEE Sensors Journal, 21(17), 19395-19406.
  21. Wei, B., Hu, W., Yang, M., & Chou, C. T. (2019). From real to complex: Enhancing radio-based activity recognition using complex-valued CSI. ACM Transactions on Sensor Networks (TOSN), 15(3), 1-32.
  22. Arshad, M. H., Bilal, M., & Gani, A. (2022). Human activity recognition: Review, taxonomy and open challenges. Sensors, 22(17), 6463.
  23. Li, X., Zhao, P., Wu, M., Chen, Z., & Zhang, L. (2021). Deep learning for human activity recognition. Neurocomputing, 444, 214-216.
  24. Abdel-Basset, M., Hawash, H., Chakrabortty, R. K., Ryan, M., Elhoseny, M., & Song, H. (2020). ST-DeepHAR: Deep learning model for human activity recognition in IoHT applications. IEEE Internet of Things Journal, 8(6), 4969-4979.
  25. Alshehri, F., & Muhammad, G. (2020). A comprehensive survey of the Internet of Things (IoT) and AI-based smart healthcare. IEEE access, 9, 3660-3678.
  26. Medhane, D. V., Sangaiah, A. K., Hossain, M. S., Muhammad, G., & Wang, J. (2020). Blockchain-enabled distributed security framework for next-generation IoT: An edge cloud and software-defined network-integrated approach. IEEE Internet of Things Journal, 7(7), 6143-6149.
  27. Loncar-Turukalo, T., Zdravevski, E., da Silva, J. M., Chouvarda, I., & Trajkovik, V. (2019). Literature on wearable technology for connected health: scoping review of research trends, advances, and barriers. Journal of medical Internet research, 21(9), e14017.
  28. Muaaz, M., Chelli, A., Gerdes, M. W., & Pätzold, M. (2022). Wi-Sense: A passive human activity recognition system using Wi-Fi and convolutional neural network and its integration in health information systems. Annals of Telecommunications, 77(3), 163-175.
  29. Ye, W., Chen, H., & Li, B. (2019). Using an end-to-end convolutional network on radar signal for human activity classification. IEEE Sensors Journal, 19(24), 12244-12252.
  30. Liu, J., Wang, L., Guo, L., Fang, J., Lu, B., & Zhou, W. (2017, October). A research on CSI-based human motion detection in complex scenarios. In 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom) (pp. 1-6). IEEE.
  31. Zhang, J., Xu, W., Hu, W., & Kanhere, S. S. (2017, November). Wicare: Towards in-situ breath monitoring. In Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (pp. 126-135).
  32. Krueckemeier, M., Schwartau, F., Monka-Ewe, C., & Technische, J. S. (2019, June). Synchronization of multiple USRP SDRs for coherent receiver applications. In 2019 Sixth International Conference on Software Defined Systems (SDS) (pp. 11-16). IEEE.
  33. Machado-Fernández, J. R. (2015). Software defined radio: Basic principles and applications. Revista Facultad de Ingeniería, 24(38), 79-96.
  34. Ulversoy, T. (2010). Software defined radio: Challenges and opportunities. IEEE Communications Surveys & Tutorials, 12(4), 531-550.
  35. Pu, Q., Gupta, S., Gollakota, S., & Patel, S. (2013, September). Whole-home gesture recognition using wireless signals. In Proceedings of the 19th annual international conference on Mobile computing & networking (pp. 27-38).
  36. Sigg, S., Scholz, M., Shi, S., Ji, Y., & Beigl, M. (2013). RF-sensing of activities from non-cooperative subjects in device-free recognition systems using ambient and local signals. IEEE Transactions on Mobile Computing, 13(4), 907-920.
  37. Khan, M. B., Yang, X., Ren, A., Al-Hababi, M. A. M., Zhao, N., Guan, L., ... & Shah, S. A. (2019). Design of software defined radios based platform for activity recognition. IEEE Access, 7, 31083-31088.
  38. Costanzo, S. (2019). Software-defined doppler radar sensor for human breathing detection. Sensors, 19(14), 3085.
  39. Zhang, T., Song, T., Chen, D., Zhang, T., & Zhuang, J. (2019). WiGrus: A WiFi-based gesture recognition system using software-defined radio. IEEE Access, 7, 131102-131113.
  40. Taylor, W., Shah, S. A., Dashtipour, K., Zahid, A., Abbasi, Q. H., & Imran, M. A. (2020). An intelligent non-invasive real-time human activity recognition system for next-generation healthcare. Sensors, 20(9), 2653.
  41. Barua, A., Zhang, Z. Y., Al-Turjman, F., & Yang, X. (2020). Cognitive intelligence for monitoring fractured post-surgery ankle activity using channel information. IEEE Access, 8, 112113-112129.
  42. Al-hababi, M. A. M., Khan, M. B., Al-Turjman, F., Zhao, N., & Yang, X. (2020). Non-contact sensing testbed for post-surgery monitoring by exploiting artificial-intelligence. Applied Sciences, 10(14), 4886.
  43. Ashleibta, A. M., Zahid, A., Shah, S. A., Abbasi, Q. H., & Imran, M. A. (2020). Flexible and scalable software defined radio based testbed for large scale body movement. Electronics, 9(9), 1354.
  44. Ashleibta, A. M., Zahid, A., Shah, S. A., Imran, M. A., & Abbasi, Q. H. (2020, July). Software defined radio based testbed for large scale body movements. In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (pp. 2079-2080). IEEE.
  45. Ashleibta, A. M., Abbasi, Q. H., Shah, S. A., Khalid, M. A., AbuAli, N. A., & Imran, M. A. (2020). Non-invasive RF sensing for detecting breathing abnormalities using software defined radios. IEEE Sensors Journal, 21(4), 5111-5118.
  46. Bokhari, S. M., Sohaib, S., Khan, A. R., & Shafi, M. (2021). DGRU based human activity recognition using channel state information. Measurement, 167, 108245.
  47. Usman, M., Rains, J., Cui, T. J., Khan, M. Z., Kazim, J. U. R., Imran, M. A., & Abbasi, Q. H. (2022). Intelligent wireless walls for contactless in-home monitoring. Light: Science & Applications, 11(1), 212.
  48. Waqar, S., Muaaz, M., & Pätzold, M. (2023). Direction-Independent Human Activity Recognition Using a Distributed MIMO Radar System and Deep Learning. IEEE Sensors Journal.
  49. Saeed, U., Shah, S. A., Khan, M. Z., Alotaibi, A. A., Althobaiti, T., Ramzan, N., & Abbasi, Q. H. (2022). Intelligent reflecting surface-based non-LOS human activity recognition for next-generation 6G-enabled healthcare system. Sensors, 22(19), 7175.
  50. Khan, M. B., Mustafa, A., Rehman, M., AbuAli, N. A., Yuan, C., Yang, X., ... & Abbasi, Q. H. (2022). Non-contact smart sensing of physical activities during quarantine period using SDR technology. Sensors, 22(4), 1348.
  51. Waqar, S., Muaaz, M., & Pätzold, M. (2022). Human activity signatures captured under different directions using SISO and MIMO radar systems. Applied Sciences, 12(4), 1825.
  52. Saeed, U., Yaseen Shah, S., Aziz Shah, S., Liu, H., Alhumaidi Alotaibi, A., Althobaiti, T., ... & Abbasi, Q. H. (2022). Multiple participants’ discrete activity recognition in a well-controlled environment using universal software radio peripheral wireless sensing. Sensors, 22(3), 809.
  53. Khan, M. Z., Ahmad, J., Boulila, W., Broadbent, M., Shah, S. A., Koubaa, A., & Abbasi, Q. H. (2023, June). Contactless Human Activity Recognition using Deep Learning with Flexible and Scalable Software Define Radio. In 2023 International Wireless Communications and Mobile Computing (IWCMC) (pp. 126-131). IEEE.
  54. Saeed, U., Shah, S. A., Khan, M. Z., Alotaibi, A. A., Althobaiti, T., Ramzan, N., ... & Abbasi, Q. H. (2023). Software-defined radio based contactless localization for diverse human activity recognition. IEEE Sensors Journal.
  55. Yu, Z., Zahid, A., Taha, A., Taylor, W., Le Kernec, J., Heidari, H., ... & Abbasi, Q. H. (2022). An intelligent implementation of multi-sensing data fusion with neuromorphic computing for human activity recognition. IEEE Internet of Things Journal, 10(2), 1124-1133.
  56. Alimisis, V., Arnaoutoglou, D. G., Serlis, E. A., Kamperi, A., Metaxas, K., Kyriacou, G. A., & Sotiriadis, P. P. (2024). A radar-based system for detection of human fall utilizing analog hardware architectures of decision tree model. IEEE Open Journal of Circuits and Systems, 5, 224-242.
  57. Dahal, A. (2024). Software Defined Radio (SDR) based sensing, M. Sc Dissertation, James Worth Bagley College of Engineering, Mississippi State University.